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Sample Size Determination for Comparing Two
Poisson Rates with Underreported Counts

JAMES STAMEY1 AND ATHANASSIOS KATSIS2

1Department of Statistical Science, Baylor University, Waco, Texas, USA
2Department of Social and Educational Policy, University of Peloponnese,
Korinthos, Greece

The optimal sample size comparing two Poisson rates when the counts are
underreported is investigated. We consider two sampling scenarios. We first consider
the case where only underreported data will be sampled and rely on informative
prior distributions to obtain posterior identifiability. We also consider the case
where an expensive infallible search method and a fallible method are available.
An interval based sample size criterion is used in both sampling scenarios. Since
the posterior distributions of the two rates are functions of confluent hypergeometric
and hypergeometric functions simulation based methods are necessary to perform
the sample size determination scheme.

Keywords Average length criterion; MCMC; Underreporting.

Mathematics Subject Classification Primary 62D05; Secondary 62F15.

1. Introduction

The use of the Poisson distribution has always been a valuable tool in statistical
modeling due to its wide spectrum of applications ranging from economics and
medicine to actuarial science. An informative, albeit not by any means exhaustive,
list of relevant contributions can be found in Stamey et al. (2004) as well as in
Ntzoufras et al. (2005) and in the references therein. Furthermore, one of the
common features of a Poisson setup is the fact that data are often underreported.
Whittemore and Gong (1991) consider an epidemiological example of Poisson
counts with underreporting. Specifically, they estimate rates of cervical cancer
deaths in four European countries accounting for the errors that often occur in
death certificates. Similarly, counts are often underreported in environmental and
biological data. For instance, Anderson et al. (1994) consider estimation of the
rate of gallinule nests in a Southern Louisiana wetland. They account for the fact
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484 Stamey and Katsis

that a cursory airboat search is likely to miss some nests that a thorough search
conducted by foot would not miss. Failing to account for this underreporting
results in biased estimates and inaccurate sample sizes. This issue is illustrated in
determining the required sample size to estimate a single Poisson rate utilizing
a �1− ��100% confidence interval. Assuming that no underreporting exists, a
frequentist formula yields

n =
(
2z�/2
�

)2

�̂ (1)

where � denotes the interval’s width and �̂ is an estimate of the unknown rate. The
above equation is crucially modified in the case where not all Poisson events are
recorded. Practical situations where this may occur include absences from work or
certain types of cancer as death causes. If p denotes the probability of reporting the
event, where p < 1 then (1) becomes

n =
(
2z�/2
�

)2
�̂

p

which results in higher values for n. However, rarely is p known with certainty and
the normality assumption for the above equations does not always hold.

In this article, the problem of obtaining the optimal sample size for comparing
two Poisson rates with underreported counts is investigated. The cases of only
fallible data and a double sampling scheme are analyzed separately. Since the
reporting probability is usually unknown, the Bayesian approach seems like a
natural choice for determining the sample size since it takes into account the
uncertainty, which is inherent in any estimate of the unknown parameters. In a
Bayesian setting, this uncertainty is expressed through the prior distribution on the
parameters of interest. We have opted to use an interval based Bayesian sample
size criterion. The reason being it offers a considerable practical advantage over a
decision theoretic one. For more details on this issue, see Joseph and Wolfson (1997)
and the references therein. Since analytic expressions are often intractable, we resort
to Bayesian simulation methods using the R statistical software.

The remainder of the article is organized as follows. In Sec. 2, the complete
Poisson modeling is presented along with the necessary computational details. In
Sec. 3, the sample size criteria are developed whereas in Secs. 4 and 5, the proposed
methodology is applied in specific examples while concluding remarks are provided
in Sec. 6.

2. Poisson Model

The Poisson model we consider here is the following:

Xi ∼ Poisson�n�ipi�� i = 1� 2� (2)

Here, n is the sample size, sometimes referred to as the opportunity size as it is often
an area or length of time, �i is the Poisson rate of the ith population and pi is the
probability a particular occurrence is observed in the ith population, referred to as
the reporting probability. Assuming the reporting probability is the same in both
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Sample Size Determination for Poisson Rates 485

populations reduces the amount of variability in the estimators and generally would
lead to a smaller required sample size, but this could be a strong assumption (for
Bayesian binomial hypothesis testing see, among others, Pham Gia and Turkkan,
2003). We consider two sampling cases, one where only fallible data is available and
another one where both fallible and more expensive infallible data are available.
We note that the observations X1 and X2 provide only two degrees of freedom
to estimate the four parameters, thus in order to identify all four parameters,
either informative priors or validation data are required. We also allow for the
second sample size to be a known constant times the first. For instance, expense or
inconvenience in sampling may make it desirable to sample more heavily from one
population than the other. Specifically, we let n2 = kn.

2.1. Only Fallible Data

For the case of only fallible data, the procedure is an extension of Stamey et al.
(2004) who determined the required fallible sample size for the one sample case.
That is,

�i ∼ Gamma��i� �i�� i = 1� 2

pi ∼ beta�ai� bi�� i = 1� 2�

As mentioned above, since the data only contain enough information to identify
two of the four parameters, at least two of the above prior densities are required to
be informative. The derived posterior distributions are not in a true “closed form”
as they are functions of hypergeometric functions and confluent hypergeometric
functions which are infinite sums. Specifically, the posteriors are

	��i � xi� =
�ni + �i�

xi+�i�
xi+�i−1
i


�xi + �i�
1F1�xi + ai� xi + ai + bi�−ni�i�

2F1�xi + �i� bi� xi + ai + bi� ni/�ni + �i��

where 1F1 is the confluent hypergeometric function, 2F1 is the Gauss hypergeometric
function, and n2 = kn. These forms are not particularly useful in a simulation based
sample size determination procedure, thus we use the Gibbs sampler to estimate the
posterior densities. For the Gibbs sampler, we augment the observable data with the
latent variables Zi which are the unobserved underreported number of occurrences
in population i. Combining the Poisson data in (2) with the above conjugate priors
and the latent data yields the following joint posterior:

	��1� �2p1� p2� Z1� Z2 � x1� x2� ∝
2∏

i=1

p
xi+ai−1
i �1− pi�

Zi+bi−1e−�ni+�i��i�
xi+Zi+�i−1
i � (3)

If the reporting probabilities are assumed to be the same the joint posterior
simplifies slightly as there are only three unknown parameters instead of four. To
implement the Gibbs sampler, the following full conditionals are required:

�i �Zi� pi ∼ gamma�xi + �i� ni + �i�

pi �Zi� �i ∼ beta�xi + ai� Zi + bi�

Zi � �� �� �� p� x� ∼ Poisson�Ai�i�1− pi��

where n2 = kn.
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486 Stamey and Katsis

After a suitable burn-in, sampling iteratively from the above distributions yields
an MCMC approximation to the posterior distribution. From this chain, quantities
such as the ratio, �1/�2 or the difference, �1 − �2 may be approximated as well.

2.2. Fallible and Infallible Data

In some instances it may be possible to conduct both a fallible and infallible search
over a small sample and strictly a fallible search over a larger sample. For the
sample where both a fallible and infallible count are available we add the following
data to the counts in (2):

Ti ∼ Poisson�n0i�i�

Yi � Ti = ti ∼ binomial�ti� pi�

That is, Ti is the number of occurrences in a sample of size n0 observed by
the infallible search method. The variable Yi is the number of the Ti occurrences
observed by the fallible search method. This extra data adds the necessary degrees
of freedom to estimate all four parameters without requiring any priors to be
informative. Note we again allow the relationship between the sample sizes,
n02 = kn0, if unequal sample sizes are desired. Adding this data to the posterior
distribution in (3) yields

	��1� �2p1� p2� Z1� Z2 � x1� x2� t1� t2� y1� y2�

∝
2∏

i=1

p
xi+yi+ai−1
i �1− pi�

Zi+ti−yi+bi−1e−�ni+n0i+�i��i�
xi+Zi+ti+�i−1
i �

The Gibbs sampler is used in a similar fashion as in Sec. 2.1 with the following
changes in the full conditional distributions due to the additional data:

�i �Zi� pi� xi� ti� yi ∼ gamma�xi + Zi + ti + �i� ni + n0i + �i�

pi �Zi� �i� xi� ti� yi ∼ beta�xi + yi + ai� Zi + ti − yi + bi�

Zi � �� �� �� p� x� ∼ Poisson�ni�i�1− pi���

3. Sample Size Determination

Suppose interest lies in the ratio of the two rates, �1/�2. We now describe a
simulation based procedure to determine the appropriate sample size to estimate this
quantity subject to satisfying desired criteria. As in the previous section, we handle
both the case where only fallible data is available and the case where fallible and
infallible data obtain.

3.1. Only Fallible Data

For the case of only fallible data we determine the required sample size to obtain
a (1 – �)100% posterior interval for the ratio, �1/�2. We employ an interval-based
methodology, termed Average Length Criterion (ALC), that provides fixed coverage
intervals. Originally developed in Joseph et al. (1995), is one of several criteria that
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Sample Size Determination for Poisson Rates 487

would be straightforward to implement using our software. Under this technique,
we are looking for the smallest sample size such that the average length of all fixed
coverage equal tailed posterior intervals does not exceed a pre-specified length. The
expectation is taken over the marginal distribution of the data. More specifically,
let 
 denote the parameter of interest. Thus, we seek n such that

∫
X
l′�x � 
�m�x� ≤ l

where m�x� is the marginal distribution of the data, l is the pre-specified length, and
l′�x � 
� is the length of the (1 – �)100% equal tailed interval R�x� derived by finding
the �/2 ∗ 100 and �1− �/2�100 percentiles such that

∫
R�x�

f�
 � x�d
 = 1− ��

Though the highest posterior density (hpd) is the narrowest posterior interval, as
Wang and Gelfand (2002) point out, the equal tailed interval is much simpler to
compute and is invariant with respect to transformations while the hpd interval is
not.

There are other interval-based criteria that are also used in practice such as the
Average Coverage Criterion (ACC) where the coverage probability is averaged over
many posterior intervals of a fixed length. The fact that the ALC deals with fixed
coverage intervals (such as 90 or 95%), which is conceptually familiar and appealing
to a practitioner, gives the ALC an edge over the ACC.

After choosing the appropriate sample size criterion, an algorithm to implement
the procedure is presented below. It is based on a search over a range of possible
sample sizes. Note that we set the sample size in the second population, n2 = kn

where n is the sample from the first population for a known k. More specifically,
the following steps are proposed:

1. Elicit priors for parameters and specify coverage and desired width.
2. Generate Q values of parameters from these priors.
3. For j = 1� � � � � Q, generate data, X1j ∼ Poisson�n�1jp1j�, X2j ∼ Poisson�kn�2jp2j�.
4. For fixed coverage derive the (1 – �)100% highest posterior density intervals.
5. Average the lengths of the intervals for the Q data sets.
6. Repeat Steps 1–5 for a suitable range of sample sizes.

A curve can then be fit using the sample sizes and corresponding average
interval lengths. Fitting this curve with a logarithmic regression yields a formula
to find the appropriate sample size. Specifically, the curve ln�ALC� = b0 + b1 ln�n�,
with parameters estimated via least squares, fits exceptionally well in all cases, with
coefficient of determination over 99.5% in the examples in Sec. 4. The regression
equation can then be solved for n to determine the appropriate sample size,
specifically,

n = exp
{
ln�ALC�− b0

b1

}
�
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488 Stamey and Katsis

3.2. Fallible and Infallible Data

In some cases there may be an expensive “error free” search procedure that could
be done over a small area along with the less expensive “error prone” method. For
a fixed budget, we seek to minimize the cost while achieving the desired interval
width. So here we have the constraint

B = 2 · C1 · �n+ n0�+ 2 · C2 · n0

where B is the total budget; C1 is the cost of a fallible unit; C2 is the cost of an
infallible unit; n is the amount of area or time searched with the fallible method;
n0 is the amount of area or time searched with the infallible method and the fallible
method.

So, given a fixed budget, D, we can solve for n in terms of n0:

n = �D − 2C2n0 − 2C1n0�/�2C1�

So now for the sample sizes that satisfy the cost constraint, we can perform a grid
search to find the combination that minimizes the posterior variance. The procedure
is similar for the case with just fallible data and is outlined as follows:

1. Elicit priors for parameters.
2. Generate Q values of parameters from these priors.
3. For j = 1� � � � � Q, generate data;

Fallible counts: X1 ∼ Poisson�n�1p1�, X2 ∼ Poisson�kn�2p2�,
Infallible counts: Y1 ∼ Poisson�n0�1�, Y2 ∼ Poisson�kn0�2�
Fallible counts in validation data: Z1 ∼ binomial�Y1� p1�� Z2 ∼ binomial�Y2� p2�.

4. For fixed coverage derive the (1 – �)100% intervals.
5. Average the lengths of the intervals for the Q data sets. Perform search over

possible sample sizes (given cost constraint) to find value that minimizes variance.

It is important to note that if only fallible data is used, informative priors
are required for finding the posterior distributions. For the case with validation
data the model is identifiable without informative priors, thus the elicited priors
can be used for generating the parameters for the simulation but are not necessary
for analyzing each data set which leads to a more “objective” analysis. Thus
for this case, non informative priors, such as the Jeffreys prior, can be used in
analyzing each generated data set (for practical considerations on this matter see
also Joseph et al., 1997). In this instance we make the distinction between sampling
and fitting priors discussed in Wang and Gelfand (2002). The sampling priors
are those used to generate the parameters for the simulation study, which should
generate a sufficiently rich range of values for each parameter while the fitting
priors are actually used in the analysis. In most Bayesian sample size schemes
for misclassified data, the sampling and fitting priors are the same, for instance,
Dendukuri et al. (2004), Rahme et al. (2000), and Stamey et al. (2005), but with
validation data we are not required to use informative priors for the analysis.

4. Cervical Cancer Example

Our first example is motivated by the data in Whittemore and Gong (1991). The
data consists of the number of reported cervical cancer deaths in four European
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Sample Size Determination for Poisson Rates 489

countries along with survey information about the reporting probability. The survey
data consists of a sample of doctors from each country who were asked to complete
a death certificate for a described case of someone known to have died from cervical
cancer. Combining this survey data with the fallible counts from each country,
Whittemore and Gong (1991) estimated the parameters of a Poisson regression with
underreporting. Here, we use the survey information from Belgium and France as
prior distributions for the reporting probabilities in order to determine what sample
size, which in this case is the number of person-years, is required to obtain an
interval estimate of the ratio of these two rates of a desired length.

From the survey results in Whittemore and Gong (1991), 43 out of 50 doctors
from Belgium correctly classified the case as cervical cancer while 38 out of 53
doctors from France correctly classified the case. If we consider these two binomial
likelihoods as functions of the parameters p1 and p2, beta kernels obtain yielding
priors p1 ∼ beta�43� 7� and p2 ∼ beta�38� 15�. For the Poisson rates we assume �1 ∼
gamma�3�3� 0�93� and �2 ∼ gamma�2�82� 1�, where the units is in 10,000 person
years. These priors are somewhat arbitrary, but both are based on information
equivalent to a sample of approximately 10,000 person years where the expert
suspects a little over 3 deaths per 10,000 person years in Belgium and just under
3 deaths per 10,0000 person years in France. The prior interval for �1/�2 is (0.23,
7.78). Suppose an interval of width 3 is desired. All results are based on Q = 5,000
generated parameter/data sets and each iteration is based on a Gibbs sampler with a
500 iteration burn in and 5,000 Gibbs iterations. Figure 1 has the average length for
a range of sample sizes for the above prior specification (Prior I) and a second prior
where the beta parameters are divided by two (Prior II), that is p1 ∼ beta�21�5� 3�5�
and p2 ∼ beta�19� 7�5� (Prior II). For both priors we consider the case of equal
sample sizes (k = 1) and the case where k = 1�5, thus the sample size from the
second population will be 50% larger than the sample size from the first. As a
specific example, for k = 1 and Prior I the resulting regression curve is ln�ALC� =
−�361 ln�n�+ 2�100 with r2 = �999. This provides a value of 16.02 for the estimated
required sample size, which indicates sampling should be done for 160,200 person-
years. Proceeding similarly, we find that for Prior II, the required sample size
is 21.62, thus sampling should be done for 216,200 person-years. For Prior 1

Figure 1. Average lengths for Example 1.
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490 Stamey and Katsis

with k= 1�5 we find the required sampling time to be 138,400 person years from
population 1 and 207,600 from population 2, while Prior II requires 189,000 person
years from population 1 and 283,500 from population 2. It is interesting that for
Prior I a total sampling time of 346,000 person years is required for k = 1�5 while
the equal sample size case requires a total sampling time of 320,400. Of course, even
though for the case of k = 1�5 the total sample size is larger, there are numerous
reasons for not using equal sample sizes. For instance, in a rare disease it may be
more difficult or expensive to sample from one of the populations.

5. Gallinule Example

Our second example is motivated by studies such as Anderson et al. (1994). Suppose
interest lies in comparing the rates of Common Gallinule and Purple Gallinule
nests in Southern Louisiana. These species are marsh birds generally found in the
southeastern United States. Anderson et al. (1994) performed both a thorough
search by foot and a fallible airboat “pass-through” over 500 linear feet while
performing only the airboat search over an additional 4,300 feet to estimate these
rates. Suppose in a future study, an expert believes the rate of Common Gallinule
nests can be described by a gamma(14, 2) while the rate of Purple Gallinule nests
can be described with a gamma(8, 2). Also, the expert believes the probability of
spotting a Common Gallinule nest can be described with a beta(20, 5) while the
Purple Gallinule visibility probability can be modeled with a beta(17, 8). Suppose
also that $1,000 is available for the study and that a fallible search costs $2 per 100
feet while the error free search costs $25 per 100 feet. We used the priors only for
parameter generation. For the analysis of each data set, we used beta(1, 1)’s for both
reporting probabilities and the Jeffreys prior, 	��j� ≈ 1√

�j
� j = 1� 2. We again based

results on Q = 5,000 generated parameter/data sets and each iteration is based on
a Gibbs sampler with a 500 iteration burn in and 5,000 Gibbs iterations. Figure 2
provides the average width for various sample sizes for this fixed cost problem for
k = 1 and k = 1�5. Fitting the curve ln�ALC� = b0 + b1n0 + b2n

2
0 we find that the

minimum width occurs for 1,233 error free feet and an additional 8,354 fallible feet

Figure 2. Average length for second example for k = 1 and 1.5.
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Sample Size Determination for Poisson Rates 491

which would yield an average width of 0.91 for k = 1. Similarly, we find the optimal
allocation for k = 1�5 to be 993 error-free feet from the first population, 1,489 error-
free feet from the second population, 6,594 fallible feet from the first population,
and 9,891 from the second population. This would yield an average length of 0.90,
slightly narrower than the equal sample size scenario average length of 0.91. We
note that if all the money was put in the infallible data (2,000 feet for each sample),
an average width of 1.29, demonstrating that in this case a mixture of fallible and
infallible data is the optimal solution.

6. Conclusions

Epitomizing the above study consists of a fully Bayesian approach to the problem
of obtaining the optimal sample size for comparing two Poisson rates with
underreported counts. The cases of only fallible data and a double sampling scheme
are developed separately using the ALC interval based criterion. The Gibbs sampler
is used to estimate the posterior densities. The above-mentioned methodology uses
equal sample sizes in both populations. The algorithms do not change when this fact
does not hold, only the numerical search becomes more thorough. All the code used
in the article was implemented in the R software and is available from the authors
upon request.

Although we have considered biomedical examples, comparison of Poisson rates
is present in such diverse areas as actuarial claim counts and detection of “spam”
E-mail messages. In the former case, an insurance company wishes to examine the
rates of accident claims between two or more of its branches (or types of customers)
outlining a fairer premium policy. For the latter case, comparing Bayesian classifiers
developed for the detection of “spam” E-mail (see Schechter, 2003) is of crucial
importance to the manufacturer. Each classifier consists of a software program that
declares an e-mail message as “spam”, based on the frequency of certain words. In
both cases, specifying satisfactory prior distributions will enable the practitioner to
obtain the proper sample size in order to achieve the desired precision.

We firmly believe that the study of sample size determination with Poisson
underreporting rates is an area with a great deal of applications that merits further
research interest. Extending to the case of more than two Poisson rates and
modeling the dependence among the reporting probabilities are uncharted research
paths. It is imperative to aim at further advancing the sample size determination
theory since additional statistical techniques will arm practitioners with a great
arsenal of data analytic tools to accurately tackle this ever-important area of applied
statistics.
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