UOP staff
KATSIS ATHANASIOS
PROFESSOR
RECTOR
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUAAAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABUGFpbnQuTkVUIDUuMS4xMQAA/9sAQwALBwgJCAcLCQkJDAsLDRAaERAPDxAgFxgTGiYiKCgmIiUkKjA9MyotOS4kJTVINTk/QURFRCkzS1BKQk89Q0RB/9sAQwELDAwQDhAfEREfQSwlLEFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB/8AAEQgBvAHgAwESAAIRAQMRAf/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEBAQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXETIjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFlaY2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A9FpawNbiUtKwCGimAUUDFxRmgAxRmgAxS0AJilpAFFABRQAUtACUtACUtACUtACUtAxKWkAlLQAlLQAlLQAlLQAUUAFFABRigBQKKQBijNFwDFGaLgGKWgBMUtADaXFO4CYpRSAQ040gGmlNACUop3ASlNMBKKVwFFApAFLQMUUoqJDQ1+lD9KURjKK0JCigQlKRQA2igAooAWigBKKAEooAKKACigAooAWigAooAKKAEooAKKACigAooAKKACigApaAHUtakCUtAXEpaAuJS0BcaeKU0hiUuKACloEJS0DEpaAEpaACikAUUAFFAwpRQAlLQAlLQAlOoAbS0AJTqAG06gBtOpAJTqQDaWgApKACnYoASloASloC4lLQO4lLQFxKWgLiUGgLhRQFwooC4UUBcKKACigAFKKQxR0pR0qJDGPQ/WiIDaKsVwooEBoNAxtLTsIbRSAKKACigAooAKKACigAooASigAooAKKACigAooAKKACigApRQAClpgJS0APxS1qZCYpaLAJinYoC4ynYosFxtLSsAlLQMSloGJS0AJS0guJiloAKKBhRQAUUAFFABRQAUUALRQMKWkAlLRcQlKaBiUUwFpKAFopMAoqQFoosAUU7AFFMApCcUrgLTN5P3efzpXAWmhzuwQRRcBxOKRlLEkHHFK4DhhlzUaExkBs4PPFK4DiRnApr5EgKjOelFx2HcetNClw2DhulFwsOziq4kIO1uGFFx2LQqv5jE5z2ouh2LHSoTLgjdxjrRdBYsKQRkHNVYGJlwDwO1Q3cRO/WhgS1UrAJijvVCDFLQA00ppoBtFMBKWlYBKWgBKKAEopAFFABRQAUUAFFABRQAUUAFFACUtACUtAAKBQAtFMAopgFFAEtLW1jASlosMbS0BcSloATFOpBcTFLSAbS4oHcbTsUAJTsUgG07FAXEpcUWHcSjFAXClxSsFxKWgLjcU6gdxtLigYlLigAoxSsAUUgCigAooAKKYBS0MYUUCCigAcjp3Ipk3K4oAg81lcqW47VBcSNgE5Dg9+49KTKLHmdBkrnsT0qhLMdnA+bORzyRUlWL4uAjlCcn0rHkvPOCuB8yfeApXHymzJIFRZM4ycEVi+e8kQj6BSCDUXK5DbSQN8oI3ehHaseK5cKrsfmCnP5UcwezL7zeW+0kfMTjI4qtPL1Zfc0XH7Mt/aD8uGwC35Gsnz3dNmSCCCOf8APtTDkR0aqrjev3hVCC4y5HYpuI98VNyeVktyrJMrt90jBx0pyyrLEUfk8gii4WYNtPL4APpUcJwvlsM44ye/pQVYSNgH2S9T8tIm0zhWP3eD+B4pEtD1TY7EEA4II9akl/exBge368UySberJuziqrPkKEz8xyKLhYtJh85PTvSRyZIVhgkZP1o5ibDyuFzTRJmQr/CBVcwBR3xVKQDaKsBKKACigAooAKKACigBKWgBKWgBKKACigAooAKKACikAlLSAKKYBRTAKKACigCaitjAKKACigAooAKKACigAopDCigLhRQAUUgCigAooAKKBhRSASloAKKBhRRYLhRSC4mKWgdxMUtAXEpaQwooAKKYhKWgLgKKQCOAV5pHVsZ7UOVikjKvVdjxyo6e1X3hXHIrJzNYxRjBZXC7hyvStExoP4azczoUUjOW2+fdtAzWhgDtU8zNLIqGABjxVojNLmY7IpvEQhJ9atlM0rsLIpOpZWH0H51b8jPbnrVXYrIykjPmnBOAAMfWtVbXBbPO45NLUVokcZ8s4XgEYqz5XtTD3SJCQwb1zT2Q0rj0IFYhuOMHdThGd+aBcqI5GaJ2k6gnr7dalljzHg88U7i5UMt7ho/l3fxFvrkVXaIqfkJ3EFR/SnczlBF4yYjCHkgAD8sf41Tt5gs0avj6kenWghxNBLkN7MvH+f1quoUAkjkNk/TmmZtFkM7SKwO1VGKqx3O5mCsSpO0Y+mR/OgVjQhl3sx69/wAKomYxoWXgnj8qYWNQgYyKht7pJbeN17j1q4yJsSU7Hy7u1WncQlLTsFxtLQO42igAooAKKACigAooAKKACigAooAKKAEpaAEooAKKACigAooAmorc5wooAKKACigBaKQBQKBhiloATFLSAQUtACUtACUtAxKWgBtLQAlLQAlLSASloGJS0CEpaAEopFBRRYAoosAUUBcKWkC1EprNUykjRQbJYyBnNVi9Z85p7IvNIpWs5pCOlS6lxqiSTuvQVWZsnms27m0YWA03cKkuwEUA0FAi80oNMTHAUoNFiWPEZxSq+KZGoBCKkWYDsKNCW5DNh9Kk8+noK8iEwse1StPkUik5FZojnpUpfmgq8iExE1OsoAxikLmZTa3YkMBgj1qeSUtwOlBabZlzQsqlemCSPxqxcZYHBxRcrlKMUxJmY5LhTtX6daXyy+2UH517iqTM3BIpzTtDLGitkSjIwM8inyOFAjlQbGPYcqfanchxHWl2bjeGb58glcY7f41Ujt5xcF1YkgD5j3p3J5TWs5RBbvHnqxIx9aqiR1uFdlAAJyB0PGP6UC5TesbsOrRueR0rIsJj5rJn5lHB9qadiXE6EEHoapWlwGO7opxkehrTmRLiXTS1RI2lpAJRQAUUDCigBKWmAlLQAUUAFFACUUAFFABRQAUUAJS0AJS0AS0uK6DnEpcUAJS4oAMUtACGlpAIKWgAooAKKACgUgCg0hhRQAUUDCigAooAKKACigAooAKKAEpaAEpaQxKWgBKGIAyaTGlcjkfsKidqzlI6YU7Az1Xd/WsJM3jEe8lVmbnioNFEe7k96hyc80rlKKQ7cfWmbqY7D9x9abmkOxKGqMGgViXdioyaLhZEwcVAGGetFw5UWQ4xUCt6GgnlJ91RgmgTRMGqLNAuUm3VFuoDlJC1RFxQHKSh8VXMgpXHyErsOuKgLZouUo2El9qYx5xTGQ5jTLLkN6CnqmVZyAB0ApmchpEdwdx4b+7Vi1haVPMkKIvqKZDsigYXSQsiHjgjPWtGcqhJRseh9TTJ9DLkQnGBnmtBIHn+faFXIJ4xmgT03M1IdkglUEt0ODjjNXXUQzZRR93cSelAio1y8MyhQcZ596sXLwSRF1J8xeoH9KBWNmzlE0CsPpVTSpVjVoycbjkCrUrGckaVB6CtU7mYhop3ASlpAJS0AJRQAUUDCimAUUrgFFMAooAKKQhKKACimMDRQBPRXQc4UUAFFABRQAUUAFFABRSAKKACiiwBRRYAoqQCigYUUAFFABRQAUUDCigAooAKKACigAopDIblsLgdaSUgvUSaN6cSE5IpHYCsJM6opkMg4ods96zZrFERFOxSKGYp2KB3GbQaeFoC5E0ZP8WKsBAKBcyII0K9TmrGFpBzELipsKaLBcr4HepiooC5EAVp5GKBig5qMnnilcLEmTULPgUBYlL1WL+9A7ExcGq++gdifOaiV8GgZIcikMg20EgRu+XuelRF8MDnAB5qkSx8gRCinJORkk/maZfnMRCdXPX2zjFUYvUu3ADQKsagGU5A7H6/pTrQKsaE9VUAfSnZGNhlxb5CxRrjnJNXYlBBJ5+bJ+lFg5rEDpHFCECgnqamljDurEZ+fA9h/kUC5kU3BjiZ5WAQDO3147VLe25mkVMZ+bafx/8A1Uh8yMQo+3zSMBj09BV29tW3OqLt81gi/Q//AK6YXIrGVGu2U8MFyPrSWUbvCZsEbmABpks6G1k8+Dn7y9ao6fKEZVXr/EKqLM2i9TnHzGtCRtFABRQAGg0AJRQAUUAFAoAXFFABiigBKKACigAooAKKLgTUV0mAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUguFFABRUjCigAooAKKQBRTGFFABRQAtFAFW8vYrYqrH526KOtc/4pa5jvmkiOMoADjPc5qJM3pwTNd7lGUlTx6+teevr11bXm2RduTjcOhFY3udSO5eYc81zNprKXA2/MD71DRtE6NZdxwD+RrOjnCxZ7nrU2NDXEi1kRXO6TbnFKwWNgOvrWdJdeWhO6gVjR81B3rE+2KwyT1pWDlNgzgd8isuKQFSwb8KLBoaf2jmqcTKed1OwWRoK4IzUSyp60hWJuvQ01WUjIOaABsnipFYHg0rCuVZFYDirLqDSGmZsrsF61YmhyCRQWVd5I5NBTB5pDDeaacCgCQNUe5emaYEqH73fAzUTbkBcA4IxTIbHXEwUhVAORk1Aq7pgrHILUyGTz3IYF4h8qYHJ+v8AUVSkdTBsQ9ZOvsM4qjNm1bEtaqB0bOD/AC/kKrWTFYYlzwpH4jH/AOumZNXNdXxE6qfnOT9M1Vhcm5U9A+Ux6AD/AOtQSy/ayLJGuRzgUlr0b2BFBDHA4ZyOrHNRMpEhyeCKBldVbzPMc5JYn9OlWFwY1OMkk4FFwMu4dlmhiDbUk6KOCBjr+eTU89uVke8mPzfdX/ZAoJuWERYlU55J4/If4/rRbhpY3cMShAK/lQgLwbeAw71HbEmFc1tElj6KZIUUAJS4oGJS4oASloAKKACnUANp1ADadQA00poAbS4oASlxQBLRXSYBRQAUUAFFAC0UAFFABRQAUUAFFABRQAUUAFFABRSAKKAEoqQCg0DCigYUUAKKBQAtAoAytctxKyvjsQTU2uZXT5JAeVBNRPY3pPWxw+sjT4gTczRRntu61xV5bXGp6jLtJkk+YjPRQOSazjHm2Ox+7uaC3FtHMDHcqw9jXKRxN9o8uNmZh3qnCxKra2PT9NnNxCArZ9awfDK3dvq1tblyY5TtYH0rGWhvGR1VuhDFgMgfrWu1tEinaCM9eagu5zeqXDxAENjmoPEQdPcHmi5SKjaoF789vaubnmKsSTVITNX/AISGaNmYE7h0weDWGbhP4jWlkZWNlvEd8+WaYkA529vpWTC9vI+3fj3xSshXZ0UGtzfKyF1LDPyvwKqWdgWTdDNHJj+HoaVkUkdLbavMJMvkK3UZrFjWaDje3upPFS0UkdrY3wdQR+Wa5WyvZYZBubjPc9agqx3aShxwaxINQ3DfDkEdVPcVIrGy7YBqvb3S3C5H3hSsAyQjdg0lwpJ3CkMrzZxwaGGaBkMQOSSelSIuHp3ESeeeV7Ht75qtcMEcMexoJJH+RRjqD+YzxUbMjfMfQVSJYxowkfmgk5Qkg9QRnP8An3qVwzBynAUEn6Y/xxVoyZbsHR1UHp0zVbTG2I6nocYH6f0oIZpxTbbwlv7zYx2H+TTYgsh6kFU496CGjVt+n1JH61QtpJBENrZ+c8+tArFsvnKnqpI/GonIXL46yA/hSESGUpcKATtUZwPeoZDmQHsR0p2EJNIZbNsnIJbA9cDmizP+irEDliTz6c8mkSWtOBFttxgdqls9hQqFPyimK4WwIjwRU5XAAraJLY2lpiG0UDCloASloASigAooAdRQAUUAFFAAaKAEooGFFAElFdJzhRQAtFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUgAUCkxBRSKCigAopAFApgKOlLTAq6nCZ7CaIfeZTipp/9U30qZ7GlN2kee2eknTkN75W523oRnnBGD/M109+Ikj2ucLjAHc1zc3Lsd6XNucF9it7ZlZLb5kBClj0Gc4/Wt6W1FzMiKuCzcUnUbKUEit4V0x7rUvt0uRFDwp9T6V11tBHawJDEMKo/M+tTuMJkUITjiob6cLCwFSVFM5PxOwZCQe1S6lB5uTjIpGyPP7xGJNbWoae0WZNvFUmJnLtE2MtgVvJYI2GK81fMRymNBZvJazSoCBGOvvmurso44VKFBsb7w9aOciVNHGR3dzbT7Y5GIXoT3+ldg+j6ezmUH8D0rX2iMfZMr6brvmosd4vP97HIpmoaYrpujYAjoRWcnFmy5kassPmRhlII6gisjSbyezlMUw3R9D7Gs2jVM2bC5e3kwzEY6HGaHkt5F8xH59D2qRm1aXuybcX3Z4PGKyYJ034BpAdfvEkYkXlTVDTLkRqUkPyn9KQi2UGeKeZEY5TpQAzy/pU23K5pDKU0O/nGanYlM8E47CqSJZnPBKIn2qS+QOK1Fnh8tULKiEjex5LfSrsYuRWELCIW+csyFWbtU13PHGpkSMliNoLcY/CmRcoaeM3KKDjir1pBElvHcBvuDnHbHP8AWgTGwvJHOwXnd8oNCR+czgsQBggj8DQIuWZwUJHyspJAHSnW0bBQWP3eQRQJk7kC3fPbgfn/APXpHO1jleHPNBBFcFiWCnaxChc/WoJpStwpHzbOf6UXCxbt1EDMq5IHAJ981ESpGAcAbQKBGtaYHzDqw5+uaitHxx6kj9aCWXWpG5rWJmNoNWAlAoGFBpoApKLAFLSASloAWikAUUAFFABRQAUUANooAlorpMBaKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACikACikAUUhgOtA60ALS0wCkPAzQNakN3IEjOfSqt2S7EHpWM5HXTpJO5zd1cvJMxAZj7VvQ2sMIBVFWsGdKdjM0qwkSX7VPwedo+vetR3DHA4ApFJ3Ip3OMiiQc4pMuJmXBLc5q3LCCvAqTQzDGHGDU+xQcmgDNuLQSKUK5FapiDcYoEc61isbBSAB2xW3fWRkiyg2sORRcRkjTc9Fq1bXvkkpKMEetAalRtPJ/5ZitVp4ZF3AgGgDJTS95IaMYq5JeCIgBs59KQzOvNBQxFlYq4GauLe+YSc0XYXMCNHjBWWPcAeXA5FdCLAXDiVVwx/UUrhcyrXaT8sgH4YreismhbBhDegK0guRWcZYfKHfHXitOGNd3/HuE99tAhbeDA+6fyqyGVDlaBibSO1KZFNAylfs6bdh+tOuQsgPNVFkuNzKtJVecNNlkXhVH8RzUd1FLBIHQBgpyKu5lKDRp3kbsuW/gOTVNdcTyzHKuF2gknqx/8A10GdmaVrIPLexyPMHzAf7Ocf0rCl1KJxDeR7/PR2BOMBgTn+tNqwKEmb8wEODnChGBP5YrFm1tH3NtAB6qaRcaUjbsL5HVSW2g9+tcyfE0FjEQFXPYAUjX6u2duxE0ez+Jeh9cVheH/EEGpfdfDD+EjFFzOeHcS+yg3DE8gjGKS5lEcjNjq3H0xVHPJWFZhFDvPbp9eRUIZZpFjkGRlWA9cZ/wAaDK5s2JGEx65pNPUcEAjPPNAmXyaDW6VjMSimAlFMYlFMAooAKKAFoqWAtFIAooAKKACigAooAKKAJKK6TAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACikAUUgA0GkMKKAFFApgMmbbGxz0ouAGhYHpUsuC1KCg/eaoLmcAECuaTPRjG5BqN6sbqh+tc/4ink81ZYycgYJBpLU2jBI0JNct4nwzciuGvGJYu5+ppcprZHottqEF0uVf868zt/EUVo3yz5HoOaXIxe6epum9eDXD6R41jmlEbTAnHTpRyMm6vZM2ry2uYnJEhx1xV4X0F5bkqwzipsapPqUtJ1EtO0M5+cViRTCPX3UHgUgcTtmAkTimWxBQYNFjIztQ0+OZtxJU+1akkYcUDOdXSZs/LNtHrWrLvh680hXKEOhqxxLKT7jpV0XKr0yaAH2+jW0aYXPPWnJf8YP60hWL0cMca4RABVJ7wHkNQFi7JsIwwrOa73D1NIdixIxVflbI9D1FUWmyMnmi4ydpveqTSZ60hll5jxg4qi7igZY84mqRdj0GaB2LFw+YyKjUetVclmdeW+FywxWhqESrbO/oDzT5gRzHmNu2g8VVnuEt4jK5+g9aFrsWmXb1hb2W5V3O3yr7e9WNAddUsySAGByQaeqKuc2IncZJJPvXTXGnmLPy/KelFzSLMHR7l7O/RkPJYcU6wg8zU0VRkFuaLm0tYnoUrtLbpJjkgc1IuVgSNcErkZ96pHh1X7wRAnLDqQFWp7GIzXCqBkZyapK5hc2tMhKW6sfSrKAIm0dBWkVYhsU0h4rQkSg0DCiiwCUUwCigAooAWipkAtFIAooAKKACigAooAbS0AS0V0mAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFIBaSiwgpaQwpaLAIKWgZXvnKW7MKj1VgLYg96mRtS3OdvJGDFy3GDxVe/ZmUrnk8VyTPTgivZwm9uzI/3VrZsbVLe2Ax82Ofc0RQ5TRyHiLSYkt3JzGp5A61r626yzeWRxVk87PMZtMKkkKce4rtLuwRhkKDT5mUmnueeSWs0MgZcgjoRXaSaQkx2shwfaj2jJcIt3E0jUXggj3tzgZzVqz8N20LB2ZpAOgJ6VDdzaMrKxDbF5tQa7wQrHjPpW0toFify2zwM1BXMbllIfLWoNOOYFpMg1lbIqsJdpqREtxF5q+9AlUikMzJlaM4xxVq45GaYGZIDnPSpZEyKAIgzAY604LxigYwFs1IFxSEJuOKUikMYQSeKeBSAjKjHNPYcUDI1GKXgd6YEkKbjk0vmrFCXboKdiSaQRSQTpKR5exg2fpXP3erILaaFSCzgg9+tFhpM5LWlZtmPugYFXNRXzIgMdKuLsaJB4ZuJLddyHqefejSEKyBe5olK5Vjq72bzbN2KkEiq9+dlkE6luBUWGinoFuovvNyMLwc1Z0m3YMz54H86aVwq1VGO50eQxAH+9/wDWq9oFqJ5GldcxoOPc1vGJ4tSV3c0dJsvIgEki/O4z9BWgxrVRSMrjTSUxAaQ0AJRTGFFABRQAUZxSAM0UALSZpMBaSkAUUALmjNABSGgdgpKAFpKAJ6K6TnCigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKQC0lFgHUUAFKKBmVr0myJRVXxFIwlIHQDisajO7DoybMfar31VeasaUq29l58h5fLZ9u1YJXOqTL0r7FbA6DisK91xHJRBhfUVViVTbKNwHbVMHkHmpvtcR/ecbqTK9mxZPkb7tQNfQySbS3PbmpZag0OcgjIGKXay8g5FIQiOQMBST7VYhAVc4pAiWCIlW+Ujd1zT1lyCvQHoaCrjbNwkZQ9RUa4jJA9aALZkB71SaYg4PFS0MvCX3qokwPFIZaaTcMZqHdmmArDNITSAQcHBppfDc0gHPxTC4NFgAtgVEznNICQNxUO8g0ASls9aiLigY+Rht4qu0hzxTEOui7w+WoyxGRT7eCWc+avRTgUwsY8Oi3Dt5axneepPaujd7kN8jbcCkUnY5i+0S8hGGjDj1U5xW5dS6hbMGWJpmb+6M0XL5jD0vTJEYM6lfYitG5u7gKWvlEKf3c/M1Naic0twWB7qbOPlA2oPX3qxody15JJMeEH3eOAB/n9KrlZyzxHYsxWu144UXvwB35rd0G0Eji6kHTgfWtYQOGpUbNaytxaW6xAc4yT6mpSa3MrgabmgAooASigAooGFGaQBSUALSUALSUALSUmAUUgCigAooGFFMBKKACigCxRXQc4UUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUtIBaKYCijOKQznddG+ZhRrfyzOa56h6NHRGNJb3d4PIgcRxKoDE9q0UXy7BdvU8k+tZx0N7s888Ure6RLmOQyoTy2OBXaXENrcRGOdVcMMHd3q7nQndWueb2uuXE8e14+fVa7CHw1p1u+Y5CFznb2pNiUZrqcqt+Q26TIxXXNpGl4IFsDnqS1RdFe8YFnrLRsGD5X0NbE2iWLpt2qvpg9KLoLdxYNQWdQyuCDWc/hyeJi1neIq9lJNLQzaOihkVkBU5HrXP2s13YN5U/HY4HFIk3I3Z7h0A4xn9aj06XzrhpEOTs5/OgCSQHvU0ihhUspEEZCnNIwxUlFmOQnkVUWQqeKYi60oPTr3qnvJOaAJmk5qs784HWgCcuSag3nbQBMxqFm+Q0hiCbeCeRz3qs77RxQFydpPeqpkJoAbe3YgtnkPXoB6mqWrKZYhHyBnJoA6bQ7jbaxoSMgVytndTw4Ve3emOx3rtFneSoIHrXLQtcyJudjj0qRGtqWuiJQsWC2MZrEuoQsLE9xTsS5WMme8lvL/fKN+GwFzxU2jWwa8y4Gc8k9BW0YpHDObOp8P27mHy4gAZCAAB2re8N2P78T7MRIuFHqa0Suc7N+CJYYUjUcKAKeTWpA00GgBpoNIBKKBhRQAtJQMQ0GkAUUAFFABRQAUUAFFIAooASigYUUAFFABRQBYoroOcKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKACigAooAKKAHUUALRSC5z/ieNleMr0fj8a1tUtBeWbJ/Ep3A/SolBM6aNSzsznL0sluqr0ApL48H2Fc70O+Opy95O6sRU2oRbwWA5HWi5stDLa7mLHDEUn2fdLkCi5VyM3Mucbj+dWFtdpzUWGJbiRzkmrMaFBgCiwi9bkLHgmqO9vWpCxcuhHKnIBIqsGxQIuaWqwRYA5bmq8Muz8OlMlmhJKuKotKMYzSYRJZJOcCqhYl8+lQWTkk1GGBpgShuKZu44oAHbJ4qFpADQImEhqq0nU5oAmmmwpFVGcnpQA4saaoJOKBjl5q3DB8vJpAVGg8wY71pLblegpXAo29iMjNa1tB8wZvWi4xGiCRhQMDFXHjU4oIehk3sAktWBPJrf0/SW1FXKyooU4OeSD9K1jBs5alRI5/Q9Emvr+ARqwhQDe30r0TTbCLTrVYIeg5JPc+tbxjY45TuTxoI41jX7qjAp1aGQhoNADTQaBiGg0mFxtKaB3EooGLSUBcQ0GkMKKACigBKKACigAooGFFIAooAQ0GgAooAKKALNFdBzhRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQAUUAFFABRQA6igBaKQEdycW8h/2TRdAm2kx/dNKWxcdzn5IlftTZpgnQ1yTR6sGZd/a4ZeOM81bd1kGMVJqZ5sk2g7etaTSIq8DpQMyxZ56CrrT4OemaRZT+wKevFSvc5zz1pElT7GF+/wAelSysT8xNAFae0QJlPxpxnQdOaQGbKpRyDSXMgZ8imAwyEVGaAH+bg9aix82aQFhZahXg0hlnzABUBoEK7sTmlC5oAbU4jWgCJU3HirCLtNAx0UQByealQ4OcUgLMajb0ojIJ4pASoM8Uu4KKQEinacelT6RYyalc7R8sSffb2qlBsynVjHcuabp32wea+fKHC/7RrpY4kiRY4wFRRgAV0RpHnVMQ3seaeK7+/wDBfiq01W3Bayu02zRn7rEdR9cEYrofivYw3Xgm8kdf3luUkjPodwB/QmumKRzuTe50Okapa6vYx3lnIHicZ91PofevFfAniK68P3qSFma1kIE0eeCPX6iq5RHujVHb3EN3bx3NvIssMg3K6ngioKHGlNIY00GgYhoNKwgoFFhjaKAQUtAxpoNK4wooAKKAEooAKKACigYUUAFFABRQAUUANopAWaK6DnCigAooAWigAooAKKACigAooAKKACigAooAKKACigAooAKKACigApQKAFpRQACigAwGBDDIPBHrSikCOJ1WGS0v2jOcZyCR1HrXV6npkGpQGOUYcD5HHVTWUoI7KWIt8Rwn2x/MIJxUesaTqGlTlp4S0X8Mqcqfr6Vm4NHdGpGWzLD3Hy9awpLsL3PHvU2NDVmuenPSsKS7LHIOKnlKNgyBurVhtcN/epcoGxJdAjAbNYZuW6ZpWA0ZbnDdaynuGPelYdi3JMKo+Yx70WAurLVIM3rQIv8AmDFU1ZqLCLiuCetQq1TYZbXrmo42JFAFlDyKYrYoAtDpUfmAr70ATAiokbmkBYRhnBpo6ZoGWFcDpS2NlPfTeXFwByznoo/x9qpQbM51Ix3JrK0n1G5EUHHdmPRRXZadaw6ZbrFGoB65PUn1NaxpHFUxLatEnsrWKwtlt4VwB19z6/WpEOa6FGxxSm3uPUZp4ICknj0+tMg4n4t3wt9B+whvnuHAI9QOTXHePNZj1nxC6xNvgth5asDwx7mriJ6nNxRlUAxVg81QzrfAPiZtJufsN05NlMe//LNz3+lcqnynNLlHc99PIyOQeh7GuM+H3iE3MI0q7fMiLmBj/EB2/D+VS0M7AinEVIxtFIYhoNAxDQaQCUUDEpakYlFMAooASigAooAKKBhRQA2ikAUtAC0UwG0UgLGaBXQc4tFIAopgFFAC0UAFFABRQAUUAFFABRQAUoFACU4CgAApQKAEAp2KQDcU/FMBuKdigQ3FOx+XrQA0Cqd3rOmWPNzfQJ7b8n8hQBdxXKah8QdNtwwtIZblh3OFX9ef0p2YHVgV5lf/ABH1STItore3U99u4j8Tx+lKwHp4rxS88Wa1d5D6jNtPZW2/yo5Que0zPAIz5zIEPXeRg/nXgM15NcHM0zyH/aYmnYLs7jxhp+jRSefp9/bFmbDQI4OD7Y/lXCA1Lppm9PESgarRFetbUumrFoOn3hkLPcJlt3c54/SsZU2j0qeIVQ52TINWbmIAnisrHStSlUmylYoiKk1YRM0hEIU9qsiIVJLIVQ1Z2ADFAiFUNTBCTjpSAYBipPLweaQwU4ApVSgCRDkUgUjpSGSK3vTCcfU9MUCuWEYZzWpo2gyzYmvRsi6hDwSPU+gq1TkzKdeENw0jTptTbd9yBfvP6/Suwt44raJRtCgD5I/6kelbxppHHPEyl8I+ztoLGBUjjCgfdX19zQSWOSck1rY45Tb3JFdnbLHJ9TSRgkgKOaa0JRaiOTj9fSs/XNWt9H02W6mcCOMZAxy7dh+dGojB+I3io6VYfYbRtt1cKVGDyid2+teXalez6xqUt/cnLyHgdlHYCrSAihXb9fWpQAOlMklR8dutNWmO5IHGcEYpuKYXLVpdSWlxHPC5V42DKQehquBU2Hc9u0DVItZ0qG8j4YjbIv8AdYda8++HWsPZauLJyTDdfLgdm7GpaGenGnOMGosUMopDENKaQxlFIYUUAJRQMKKAEooAKKACigAooAKKBhRQAlJSASloAnorc5xaSgBRRQAtFMBaKACigAooAXFLQAUoFACVW1LVLHS4RLe3CxA9AerfQd6BFoCuIvPiRFkix092x0aZgP0Gf507CudyFryfUPFms6gSHujFH/ci+UfpyaLBc9Tnuba3GZrmGMf7cgX+deKSSu7Eu7MT6nNFguerXvi7RLMN/pgmYfwxDdn8eleSs3GaLCud5e/EdRkWdjk9mlf+g/xrz9mp2Hc6e68da3cfdmSAf9M0H9a5VpCenFArmld6zqV1/wAfF7PJnsznH5VkvIc4JoAsNNwSTms6SQsSAaAJ5bkZwOKpsaYErSg9TUABc4FAEm4swCVJEAgwBz60gHJGFA9e9SKKAEYhELHoBUE7Ga5htV/5aOE/M4/rTQHqHirSZbjwBaxQjE0Fskij3ADV193AGtBFjK7Nv6UNXLpycXdHl0USajpUF9CvLr86+jDg/rmpbKJ9D1u40qT/AI95mMtux6AnqP8APrXHKLR6dKqZTxYJGK3L+yDEugwe4qDr50YaqBUrxlWxikVdDQPanKMUrCE2k1Iq5OKLAIiZPNSBCKmwEZTNSPwp4FILkYAFSWdhPqEnlQL/ALzHoo96ai3sS5xW7IwGdgkSGR24Cr1Ndpo+lQ6dFwN8h+8/r9Pato0W9zlqYpL4SpoOgrbKLm7UPOeVXqI//r+9dJHGIUEjj5jyqn+Zrb2cYnJOvOW7GJGIQGcZY8qh9PU0hbLEk7iepqlExuBDO24nJPU09Bk47noPWq0QNtixIWOByamLCEbRjf0Zh0HsP8aQhXdIY2+YKAPmauF+IXiL7PbnTrZ9s0v32H8K+n40JX3Jucz448QNrupCCBibOAkLzw5z1rCiA2jAxVcqFcdGgUYqQVVguKo/KpFHAoC4KuRxTxgUBcVY+cml346UDF2UhckgUAI1xLZvHNbuUlVvlZTgiq15JumVeu0ZpAegeHviSwVYNZi3jp56dfxFed5zS5R3PfLC/s9SiEtlcxzoeTtPK/Udq8NsL67sJRNazvEw7qcVLiUpHvRrA8IeJ4tetAkpWO9T76Z+9/tAVLQ0zdIpxFTYq4ynEUhjKWgBKKAEopDEpaAEooAKKACigYUUAFFACYpaQEtFbGAUUAFFAhRSimAtFMAooAUU5RQAAVx/xD8Tf2XbHT7STFzIMuw6ov8AiadhEXjXx9FpCtZ6btnuidrPnKofT3P6V5NGWu78uzFhHzz607CubEt5cXshnupmllbksxyTUI4oETKwzjNRbsUATmULxnNVGOTQBO0hJ4qvn0oAlLt61Fk96AHM5phamApeopDkcUgCRwTUBb5sUAPzimLudsL+NAC4LnA/GpgAq4FMBFARcDqeppQKAHJ15pcYoAV22qTVec7lPUKKAJPC8f2zxjpkWMg3Kk/gc/0q/wDDGFbnx5Zf9MxJJ+Sn/GmgPc5cbCM01+X2noQQaoDlvFOjrqUGUOyaM7429DW5PFuzmolFSNYzcTz+0vZdn2a8Qxzp8p9K3tf0BNRt/Mtzsu4BlGz95fSuOcGdtOtFmDPCHGRVKGeW2ma3uFKSIcMprP1OhST2HtDjrVkmNl3A5oNEyuqAc1KUZyEjUszcAKMk0D5kRswXr3rotJ0BYcT3gWSTgqmOFPqfU1apSZhPEwiZem6JNev5k+6GAHrjlvpXW4reNCK3OOeJlLYhtbaG0iEUCBE9PU1eiiEYEkgy3VUPf61bstjFyb3FijWFRJIMseUQ/wAzTWYuxZjkmnZk3BmLsWY5J6mlVc07IQiJzxz6VZwIRgH950J/u+wqbgC/uQQD83Qkfw+w96r3E6W8LySEKqjJJPAHrTsK5leKNah0fT2lbBkPCpn7x7CvMPFetvreps4J8iMlUB7+/wCNOwXKNzcy3l1JcTNukkOSaYi5piHpwKcoHegBwpaLgKrEUoHFAh2SRmkFADhzTScUAPyNw5qPOFZ/7oJoGVyd7s57mkQYRaBigZpyigQ8DAAoBoAmglkgkWSJ2Rl5BU4IpgNKw7nf+GviAy7LbWPmUYAuB1H+8O/1rgRUuIXPeoJYrqFZ4JFkjb7rKcg143ouvaho0oa1nITvG3Kt+FQ4l8x7KRiuf0Hxjp+rBYpj9kuD0Vz8rH2NLlY0zfpxGKmxVyM04igY00pFADaWkMbS0AJRQMKKACigBDQaAJqK1MAooAKKAFooAUUCmIcBk05RTEU9Z1KLSNNmvJSMKp2g/wATY4FeffFDWTcXi6dG/wC6t+WHYt/9Yf1piucV4g1OS9upriVsvIxZj61lTkz3KxjkE4piL+mxmK3Bb7z/ADGpicAUAPZqiLZpgP3Z70wGgB2aTrQAucU2kAFqa3ApgDPjrULMTzQA5mGKjGScCgBQDI2AOasxqI165J60ACxiNcDr3NKvWnYBNpp/SkA0DGKQsC+KAFPznA6d/enn5VoAp38oWLbjFVdSfrSA6j4ML5njR5CPuWrkfUlR/jU3wOQt4lun7C3IP51SG9D2SQfNRdSRwK0ksixovJZjgCmIjuB8xPY815/4r+JsMQNnoaCeVTg3B+4Pp61LklubwpTlsjsprmCzAmuJUiQdSzAZHcV4NqFxqWr3Bn1G7lmY9mY4H0HaolUibxwlV9D1HX9Q8L3jNE2oQtKMhZE5I/GvK47WKMghT+dZc0WbRwdZdTvYNKvpJ0jhMbxMeJt4C49T3rmpdf1BrE2SSeVblQhSMY3D3PU0vcNfZVj1zTNJtNMhHlkSykfNKep+npXj2jeJ9W0KcPBOZoc5aCU5U/T0/CrXKjmqUqyPZyKzvC/ijTNfgDRMEuAMtaucOD6+4+lXc5HFrc1o41jXzJBkn7qHv7miQszbic5p2IuRyMzsWY5JoAJ69ew9aLDEAyasbfIHrJ6/3f8A69F30EKo8jI48zv/ALP/ANeolB780kr7jbFJwM9hWN4s1ldF0t5gR5zfLCpP3m/+t1qrE3OV+IviLezaRbtkf8tyD/47/jXF7TJK0sjF3Y5JPcmgRDChPDDkcVLKgUhx9DQA9RjilHIzTAdQegoGHelAzQIU8Up6UAGaTFAC0UAMmOIT78U26/1aD1agBq9AKUUFDh6UD9aAFAwaKQh2fam5pgSKaatIRKOTQvSgY4Ugp2GdHoXjDUtK2xs/2mAf8s5D0+h7VzwNJxTHzM9a0nxZpWqAL5v2eY9Uk4/WvJ8ntU8qHzM9yHIBGCD0IOQa8j0rxLqmlsBDcM0QP+qc7lNQ4MrmPXMVzGkeOrC92per9klPfOUP+H41PKx8yOlxRFJHMgeGRJFPdWBpWHcSnFTQUNpcUhDaXFAxKKAJRQK1MQFApMAooAWlFNAKOtKBTEMu7lLOzmupPuwoWNc38SdQ+x+HzbqfmuGwR7Dn+eKtCZ5Prl291cyzu+55GZmPuST/AFrMvpCxPNMkTTlDXTyY+7wKn02MJbbjwXOaQFlzk8UhIoAKKYC/QUCgYUUhAxAHNRysAKYDXcdBUec0DsOHNKg5zQAqDBpXB2kgdKAJlFMRyUFAiT7ozSdBlvwFADXYnp0pu4s2KAJIlzg1KgwoouA2Y/LUdy4RCSegpAY1+5LEZzUcv72TC9zTA9K+BUKo+p3jkBQFTJ/OsjRtXTQPBU0Mf+uu3ZmI6gDgD9KpK4PU1PHvjEarqY0q2ybZeJPmxuH4V55aO8l2J2Yli24+9E3aOh14eKc7M3xYxD/VoQKuw/cFedN33PpaVOKWhRNtjtV9QhLBztwCRxUXNGjNMYHUVLPkGqEVXQCnNQZ2RWnXvT5DxmmZSiil5slvMs0EjxSIcqynBH40l0xZmJOT6mtYtnDVgjv/AAn8S9zJZ6+2D0Fyq/8AoQ/rXmb1umzzqlNI+mIZI2iWSJ1cuoKupyAvr714Z4N8W6j4eY7WM1mxyYGPA9wexqrNmDdj3LYcc8jtiqPh/X7DXrUS2cmZP4ojwyn3FO1iXqXDx09M/wCfauY+ImvLpln/AGbaHM9yp8xx/Cnt9aQHF+MtXOraw5jcm3h+SPjr6n8awxxTCw7OKaxoEK2HUr60zOKAFtySNp6jg0j4SRHHRuD9aBE1PA4zQA3JpWpAApOaYC844pBQAoyaQdaAGXRz5Y9zTbv70Y+tBQLSr0oEPUUgoC47FCjNAXEp2KABaB1pASqeKaKAF75op3AcDSZoBDg1NBxQMeDTc0APFNBoAv2Wp3ti262uZIz/ALLcflVPd7VNkO9jsdK8fXkRVL+MXCdNw+V//r1x+6lyofMz1yy8TaNfRB471I2P8Ep2mvIvMwCSaXIh8x7fE8U6loZo5QOpRga8St9UubSXzLWZ43HRgxFTyD5j2/aa8cuvEGp3PzTX87HrgOQPypcrHzI9lFAqiAopAKKUUDFFKKaJFFR3lzHZWc11KcJEhc/gP8/nVJAeXfFHUzdayYEOY4ECY9+p/nj8K5PXrt7i7klc5ZiWP1NWtCWYty25wueSaS1HmXik/wAPNMRqqAqKgGABSmpAQ0opgKBTloAO1IzACgdxrtgVDK+aBXGOcmkUbjigCSNcmpYlAHSgByqKkA4zQFxoWkL/AD4FACoqrk0N0xQAxjuOaUDJxQAsceTmpU6ikA/oKRyAOaAKGoSAKQD1qtqUgyaoCPTYjIzvjgEVq6LaE2KYGS/zfhSKKN1J5th5G7Jjc5H4n/Gt2w8ODVL0pAo4GSzE4/zmnzBY53T4CWXArsNQ0C601PLWFFk6jJyCPrUTlpY68P8AHdleNCsa5rNmvb+1f97GjL6qK4Wrn0UaiW5oSIQMjmqI1HzANyMmfap5Wac6kJLu3ndTZZFK5BzVWZN0Ru2BUUjAjPpVJGbaRHK2BVWeYjPNWo3MJ1YojncEk0tlZXOo3AihQnJwTWkYHnVcQuhWVGkbCgn6Cu60/RorVNpStkrHBKbZyUVtM5wqGvRLbTUnIUJgD9Kd2Qcjp8GoaU0d7BM9vIBwyHB+laviO5ie4+yW/wDqohtY+rUXEZuoXlxqN291dSeZK/U/0FQHilcLiEikpgIeacBzmgBuCKcTQIAAylT3HFAxwelAWHQvuXB6jimtwwYd+D9aBEx5phagB2MVXluVj6nFAFgkDrWZNqag/IcmgZol8NjFYr6hM5+UUAak7fMh+tQ2STSJun4HYUCLS8inKoHagBwFKKAAUUAFBoAUCgdKAHAYFNJoAcTTc0AL3pA3NADxgUwsM0DuPyKj3UASAjNR55zQUS7qhZ8DNAExkqmZd7YWgRM7GQ7R07mkJ2jFAEjABR7VA0mRikA5nIGCetVZpckYp2FY+icUtZFhilFIAopiHCnAU0gOW+I2pC10hLQHD3DfMP8AYHX8ziuO8cap/aWrXMitmKL90n4dT+ea1iibnEX8g3E5qveuCxFFgsGlpmSSQ9elWNMTFuCe/NIC0eaKQCjrSjpQId2pjtigBsp5qNmyaAImIY0pUZzQAsQ+apIlO7NAE6LwPSndjTAR24wKbQA1V5p6jigANKBk0wBRzTgMUgHKKASKQDZiAvNR3T4jJ9aAMe7V5pliXlmOBVjS4zcazbqScB9xx6DmmM623tltrZIF7KA5/oK0bO1N3cpEMgZyxHYVJRteENPMUDTOuHk5x7dv610NjAIoxgYFA0c/4xuAHhtE4IBdx+g/rWHrN6LzUZpgflLEL9B0rlqzd7H0OBwvJHmkjMmhVmyRUjuuM1hc9PlRC+1V27FIPYioZ33UczCyKd1YxtGZLUkS5z5fbHOf6UksjR/dquZmFSMWY0rSBypU7h2rUhkW4vELKpPritYO552JlyK6YaToDXjCW6BC9l9a6a3x5YK8YrsUUjxZ1ZS3NPRbK3tFPlxqFjQsMDv/AJNWNNilNu+R1wMfXmggQWxmcfKSRwoHet2ytE0+GS9uyB5SFz7AClcDn/Ek40PTxHGw+0S5UY65HU1yOv6pJq2ovcNkRg4jB7L/APX60hFA9Cc03NMQ00mfmxTsMcKUUCCnGgLjCM0uaAE6UdTQMU5K4HU0+Ncc0AYtxeuGKAYIODWldWUQnM237/P40AYyx3E5yQxFbkSBVwBQBmwaWTzITj0xWuoxQK5Xt7OONhhatgUXACKDQISgdc0gFFJmmAd6TcKAHGmk5BxQAu4CoiT60APZvQ1HmgB+71phNADt2TTc0AOLUwsKBj881GG9aBkhaoWcUANlZmO0ZyakiAHzHrQA5EEaAU1354oAJHwOagdsigBHlG7rULdc0BcSVuuKXyyykigD6TFArIoUUCkAopRTFYz/ABJqK6Xotzc5G8rsj/3jwP8AGuQ+JmqebdQ6bGeIRvkx/ePQfgP51pFMluxwl/MRCxJ5PJ96h1H/AFQHrWr0JMK7NDAyXEaDuwH61JVzWgTy4EXuBg1LJwQKkBtFAC9hTHY0CGucmmsaAGMfSkxk0gFWpIlBFAD4u1TRoABTAQntQ49KAEAoBoAUULQAuMGloAUcmgUXAUkUjEAZpAUr1js4qG9kHNAGv4CsFvtUnmf7sSYH1J/+tW98LbXzbabjmWXk/wCyB/8ArpjR2GkadHAWkXOWxjNaxwowuDxj3qCynrt19h0mZ1OHYbUPueK57xneF5orVTwg3n0z2rGpUSVj0sDhed88jnHbmmk5rlufSJWVhlyU4CEnjnPrUcv3s0mCIZDhaH5oJZWdfM9qmRcen407kWE0+z33caKACScfkat6fkalbYODv/pWsHqcWMpxUGdJpukk4QnPrgV1Gk2ccUauTudsMc9BXbc+asWLKzEEamQDd1Ax0qHxBq8ej6dLcvjeBtjX+8x6f4/hQBy/xA1792dLt2yZPmnIP8P8K/pn8q4a4nklleaVi8jncWPrSFcYxqMnNMm4E+lJimAopMmkBIppiHmmBKaPxpAJinYoAbinHGMUwFDDFIooAkZRJGV69xSIcGgCFRipLldj7hyD+lAxAaYpoESgmm5oAUn1ppNADxzTA2KAFbg4ppNAAeDSZoGGcU0mgALZptACihetAATzzSMBnmgdg3Gk4FArAcd6a5xQMVmAGarSPuO0UASxkO30p6qI4wO9ADi1Qu9AAznJqFjnnNADy1RigQO1NagCS3kG4g9DVfJBoA+m6WsSwFKKBXGXM6WttJcScJGpZj7Cuf8AiHPJB4dZY22+ZKqMe+OT/SqWoXPM9VvXvr24uZD80jliPTNUpDwa6ErGT1KmoOxixnpTb3/VU2UULFfM1CHjO0k/pUujAG8kJHIjOKgDQfliaH+9SAbSmiwDXpr9aTAY5waa/WkAqjJpYu1AE8SgYp8fagCTGBTm6UwIHPNI3WgBKWgBRQKAHjpQKAHAcUDpSAZNwhptx/qzTAyb1utR3nU0DR6l8NbfytOLjuuPz5P6CtDwSAuiQ47oCaRRuzTLEjSOQFUEk1k+LJXi0WTYcb3VD9Cazm+VXNqEOeaTOT1O5a6u5JWPLHj6dqgdyVVcD5c89z9a45au59ZSgqa5YjAKWpNSGQfNSv8AeoAhIqVFDPz2yaQESp3qdVBzmkS0Mth/pkR6bSWz9AaH+Vxj0Na0/iOLGv8AdnpWgyhtNgcnkoP5VhXlzLbeCg0LlGaMJkdQDjNd6R8u2c7411v+09UaOFs20BKJ/tHuf89q52T7p+uKYhrHJpvagkM03vSAcDRTAXqKCMUhCqOaVOtAxTkDNShQe1AEKuc9ajbiQimBYzSL0oAcBmlWkAtR3DFYyR1oAWS6jRSkh69KxIGNxdDzDkZPFMZrxnJB7GhBxQIko7D60gEpH4NMYtMBNAxWNNY0AGcUw0APJyKbQAClFAhc02gBWI5zTGoC4EjHWmN0oAZK46CoJe9AyW3XJ3kVKgwgxQIWSQYxUUnU0AMY5pDQFxOtFIBRRQICKKBjGXPSpRTGf//Z
Ε-mail: katsis (at) uop (dot) gr
Short CVProfessor Athanassios Katsis is a faculty member of the Department of Social and Education Policy at the University of the Peloponnese in Greece. His research covers the areas of Bayesian Statistics, optimal sample size calculations, statistical applications and education research. He has served as a faculty member at the University of the Aegean and has also taught at the University of Cyprus and the University of Toledo, Ohio. He has also been employed at the World Bank as a statistical consultant. Professor Katsis holds a doctoral and a masters degree in Statistics from the George Washington University in USA, where he studied with a full scholarship. Ηe finished his undegraduate studies in Mathematics at the National and Kapodistrian University of Athens in Greece.Professor Katsis has served as Head of the Department and Dean of the School of Social and Political Studies at the University of the Peloponnese.  In December 2017, he was elected Rector of the University, where he was reelected for a second term in December 2022.
Scientific Interests: My research interests lie in the area of Bayesian Statistics, optimal sample size calculations, as well as applications in the educational research and telecommunications. 
Selected publications:

1.     Melanitis, M., Bithas, P.S., Katsis, A., Nistazakis, H.E. (2025). Designs and Optimization of an FSO Network Under Practical Considerations, Photonics, 12, 926. https://www.mdpi.com/2304-6732/12/9/926

2.     Papadogiannis, I.; Vassilakis,C.; Wallace, M.; Katsis, A. (2024). Challenges and Trends in Student Evaluation of Teaching: Analysis of SET Data from the University of Peloponnese, Information. 2024; 15(9):576. https://doi.org/10.3390/info15090576

3.     Papadogiannis, I.; Vassilakis,C.; Wallace, M.; Katsis, A. (2024). On the Quality and Validity of Course Evaluation Questionnaires Used in Tertiary Education in Greece. Trends in Higher Education, 3, 221–234, https://doi.org/10.3390/higheredu3020013

4.     Bithas, P.S., Nistazakis, H.E., Katsis, A., Yang, L. (2024). Hybrid FSO/RF Communications in Space–Air–Ground Integrated Networks: A Reduced Overhead Link Selection Policy, Electronics, 13, 806, https://doi.org/10.3390/electronics13040806

5.     Varotsos, G.K., Aidinis, K., Katsis, A., Nistazakis, H.E. (2023) Capacity Performance Analysis for Terrestrial THz Channels, Electronics, 12, 1336, https://doi.org/10.3390/electronics12061336

6.     Gripeos, P.J.; Oreinos, D.; Kriempardis, D.; Tsigopoulos, A.D.; Kapotis, E.; Katsis, A.; Nistazakis, H.E. (2023). Dispersive FSO Performance Estimation with Gaussian Pulses and Laplace Modeled Time Jitter, Computation, 11, 6. https://doi.org/10.3390/computation11010006

7.     Siokas, E., Xesternou, M., Katsis, A. (2022). Testing innovation management and technology transfer best practices within SMEs, Academia Letters, Article 5868. https://doi.org/10.20935/AL5868  

8.     Koutsoukis, N.S., Fakiolas, E., Katsis, A., Papadimitriou P. (2022). The EU as multidisciplinary education podium: Fusing contextual and decisional policy analytics, Policy Futures in Education, Vol, 20(5), 549-564, https://doi.org/10.1177%2F14782103211039488